organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Ethyl-3-(2-thienylmethyl)- Δ^2 -1,2,4triazoline-5-thione

Monika Wujec,^a Liliana Mazur^{b*} and Zofia Rzączyńska^b

^aDepartment of Organic Chemistry, Faculty of Pharmacy, Medical University, 20081 Lublin, Poland, and ^bDepartment of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland Correspondence e-mail: Imazur2@op.pl

Received 16 December 2008; accepted 6 January 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.052; wR factor = 0.111; data-to-parameter ratio = 17.6.

The title compound, $C_9H_{11}N_3S_2$, exists in the thione form in the crystal structure. The central triazole ring is almost perpendicular to the thiophene ring which is disordered over two orientations [dihedral angles of 88.5 (7) and 85.7 (8) $^{\circ}$ for the two orientations]. The crystal structure is stabilized by strong intermolecular N-H···S hydrogen bonds, forming centrosymmetric dimers, and by some weak C-H···S interactions.

Related literature

For background on the applications of 1,2,4-triazole and its derivatives, see: Ünver et al. (2006); Dobosz et al. (2002); Jian et al. (2005); Maliszewska-Guz et al. (2005); Al-Soud et al. (2004); Amir & Shikha (2004); Collin et al. (2003); Demirayak et al. (2000); Palaska et al. (2002); Shivarama et al. (2006). For details of the synthesis, see: Wujec et al. (2004, 2007). For related structures, see: Yilmaz et al. (2005).

Experimental

Crystal data

C9H11N3S2 $M_{\rm m} = 225.33$ Monoclinic, $P2_1/c$ a = 6.813 (1) Åb = 17.119(2)Å c = 9.846 (1) Å $\beta = 100.88 \ (1)^{\circ}$

V = 1127.7 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.44 \text{ mm}^{-1}$ T = 295 (2) K $0.47\,\times\,0.30\,\times\,0.16$ mm Data collection

Oxford Diffraction Xcalibur	2592 independent reflections
diffractometer	1130 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.026$
2735 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	147 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2592 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdot \cdot \cdot S1^{i}$	0.86	2.44	3.287 (3)	169
C6−H6a···S1 ⁱⁱ	0.97	2.99	3.949 (4)	172
C9−H9···S1 ⁱⁱⁱ	0.93	2.97	3.659 (4)	132
$C8' - H8' \cdots S2^{iv}$	0.93	3.02	3.928 (7)	166

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2696).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775-783.
- Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.
- Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601-2605
- Demirayak, S., Benkli, K. & Güven, K. (2000). Eur. J. Med. Chem. 35, 1037-1040.
- Dobosz, M., Sruga, M., Chodkowska, A., Jagiello-Wojtowicz, E., Stepniak, K. & Koziol, A. E. (2002). Acta Pol. Pharm. 59, 281-290.
- Jian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, 0393-0395.
- Maliszewska-Guz, A., Wujec, M., Pitucha, M., Dobosz, M., Chodkowska, A., Jagiello-Wojtowicz, E., Mazur, L. & Koziol, A. E. (2005). Collect. Czech. Chem. Commun. 70, 51-62.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Palaska, E., Sahin, G., Kelicen, P., Durlu, T. N. & Altinok, G. (2002). Farmaco, 57, 101-107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem. 41, 657-663.
- Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, 03938-03939.
- Wujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617-2626.
- Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251-260.
- Yilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. & Guven, K. (2005). Acta Cryst. C61, o101-o104.

supplementary materials

Acta Cryst. (2009). E65, o274 [doi:10.1107/S1600536809000440]

4-Ethyl-3-(2-thienylmethyl)- Δ^2 -1,2,4-triazoline-5-thione

M. Wujec, L. Mazur and Z. Rzaczynska

Comment

1,2,4-Triazole and its derivatives represent one of the most biologically active classes of compounds possessing a wide spectrum of activities, such as antimicrobial, fungicidal, anti-inflammatory, antiviral, antitumor or analgesic activity (Al-Soud *et al.*, 2004; Amir & Shikha, 2004; Collin *et al.*, 2003; Demirayak *et al.*, 2000; Maliszewska-Guz *et al.*, 2005; Palaska *et al.*, 2002; Shivarama *et al.*, 2006; Wujec *et al.* 2007). The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically important drugs *e.g.* Fluconazole, Itraconazole, Anastrazole, Ribavirin. In recent years 1,2,4-triazole finds an important place in medicinal chemistry as material for the preparation of antibacterial agents (Demirayak *et al.*, 2000). In this context, we described the synthesis and antibacterial activity of a series of 1,2,4-triazoline-5-thione derivatives (Wujec *et al.* 2004). In the present paper we report the structure of one of them: 4-ethyl-3-(thiophene-2-yl-methyl)- Δ^2 -1,2,4-triazoline-5-thione (I). This compound inhibite the growth of Trichophyton spp.

In the title compound (Fig. 1), the C5—S1 bond length [1.673 (2) Å] is within the values observed for a C=S double bond. In the planar 1,2,4-triazole ring the C3=N2 bond is clearly double, being much shorter than the other C—N bonds. This distance is also comparable to literature data (Yilmaz *et al.*, 2005). The thiophene ring is disordered over two orientatians with respect to the C6—C7 bond; the dihedral angles between the triazole and the thiophene rings for the two orientations of the second one are 88.5 (7) and 85.7 (8)°. Atoms C6 and C11 lie in the plane of triazole, whereas the ethyl atom C12 is signifficantly displaced from the plane of central system as indicate from the torsion angle C5—N4—C11—C12, being of 83.3 (3)°.

The crystal structure is stabilized by strong intermolecular N1—H1…S1 hydrogen bonds, forming centrosymmetric dimers (Fig. 2), together with some weak C—H…S interactions (Table 1).

Experimental

4-Ethyl-3-(thiophene-2-yl-methyl)- Δ^2 -1,2,4-triazoline-5-thione was synthesized according to the method which was described in a previous paper (Wujec *et al.*, 2004). Prism-shaped colourless single crystals, suitable for X-ray diffraction measurements, were obtained by the slow evaporation of a 2-propanol solution of the compound.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N1—H1 distance of 0.86Å and C—H bond distances in the range 0.93 - 0.97 Å. The displacement parameters of the H atoms were $U_{iso}(H) = 1.2 U_{eq}(C/N)$. The thiophene ring is disordered over two positions related by a 180° rotation around the C6—C7 bond. This disorder gives rise to two positions for each of the S2 and C8 atoms; the refinement of their occupancies showed that one of these positions is predominant, with an occupancy of 0.538 (4) for S2 and C8 atoms [the other one is with an occupancy of 0.462 (6) for S2' and C8' atoms]. The positions of C9 and C10 are effectively not affected by the disorder.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Both disordered components are shown.

Fig. 2. The molecular packing of (I), viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

4-Ethyl-3-(2-thienylmethyl)- Δ^2 -1,2,4-triazoline-5-thione

Crystal data

$C_9H_{11}N_3S_2$	$F_{000} = 472$
$M_r = 225.33$	$D_{\rm x} = 1.327 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 69 reflections
a = 6.813(1) Å	$\theta = 6-14^{\circ}$
b = 17.119 (2) Å	$\mu = 0.44 \text{ mm}^{-1}$
c = 9.846 (1) Å	T = 295 (2) K
$\beta = 100.88 \ (1)^{\circ}$	Prism, colourless
$V = 1127.7 (2) \text{ Å}^3$	$0.47 \times 0.30 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur diffractometer	$R_{\rm int} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.6^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.9^{\circ}$
T = 295(2) K	$h = -8 \rightarrow 8$
ω -2 θ scans	$k = 0 \rightarrow 22$
Absorption correction: none	$l = 0 \rightarrow 12$
2735 measured reflections	3 standard reflections
2592 independent reflections	every 100 reflections
1130 reflections with $I > 2\sigma(I)$	intensity decay: 0.1%

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 0.2245P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} = 0.002$
2592 reflections	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
147 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: ?

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
N1	0.2725 (3)	0.49647 (12)	0.6098 (2)	0.0563 (6)	
H1	0.1684	0.4675	0.5868	0.068*	
N2	0.4538 (3)	0.46832 (13)	0.6760 (2)	0.0598 (6)	
C3	0.5669 (4)	0.52970 (16)	0.6930 (3)	0.0547 (7)	
N4	0.4644 (3)	0.59498 (12)	0.6394 (2)	0.0504 (5)	
C5	0.2730 (3)	0.57271 (16)	0.5846 (2)	0.0501 (6)	
S1	0.08621 (10)	0.62899 (4)	0.50362 (7)	0.0654 (3)	
C6	0.7818 (4)	0.52769 (17)	0.7589 (3)	0.0703 (8)	
H6A	0.8601	0.5469	0.6933	0.084*	
H6B	0.8205	0.4739	0.7799	0.084*	
S2	0.7156 (9)	0.5621 (3)	1.0253 (6)	0.0683 (11)	0.538 (6)
C8	0.982 (3)	0.6272 (12)	0.921 (2)	0.123 (10)	0.538 (6)
H8	1.0760	0.6381	0.8662	0.148*	0.538 (6)
C8'	0.757 (3)	0.5727 (13)	1.003 (2)	0.079 (9)	0.462 (6)
H8'	0.6549	0.5383	1.0138	0.094*	0.462 (6)
S2'	1.0016 (7)	0.6482 (5)	0.9087 (7)	0.0949 (14)	0.462 (6)
C7	0.8316 (5)	0.57473 (19)	0.8885 (3)	0.0588 (8)	
C9	0.9766 (6)	0.6655 (2)	1.0589 (5)	0.1017 (13)	
Н9	1.0536	0.7077	1.0974	0.122*	
C10	0.8435 (6)	0.6283 (2)	1.1134 (3)	0.0885 (10)	
H10	0.8241	0.6403	1.2020	0.106*	
C11	0.5372 (4)	0.67518 (16)	0.6362 (3)	0.0670 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11A	0.4782	0.6990	0.5485	0.080*
H11B	0.6810	0.6744	0.6425	0.080*
C12	0.4875 (5)	0.72417 (17)	0.7527 (3)	0.0815 (9)
H12A	0.5369	0.7763	0.7462	0.098*
H12B	0.5488	0.7017	0.8397	0.098*
H12C	0.3452	0.7257	0.7463	0.098*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0502 (12)	0.0529 (14)	0.0614 (14)	-0.0035 (10)	-0.0008 (10)	-0.0031 (11)
N2	0.0522 (13)	0.0619 (14)	0.0620 (15)	0.0057 (11)	0.0022 (11)	-0.0059 (12)
C3	0.0486 (15)	0.0655 (17)	0.0495 (16)	0.0044 (14)	0.0081 (12)	-0.0053 (15)
N4	0.0448 (12)	0.0561 (13)	0.0489 (12)	-0.0051 (11)	0.0056 (9)	-0.0040 (10)
C5	0.0512 (15)	0.0537 (16)	0.0441 (14)	-0.0029 (12)	0.0056 (12)	-0.0055 (13)
S1	0.0578 (4)	0.0571 (4)	0.0739 (5)	-0.0009 (3)	-0.0067 (3)	0.0003 (4)
C6	0.0456 (16)	0.088 (2)	0.075 (2)	0.0055 (15)	0.0052 (14)	-0.0120 (17)
S2	0.070 (2)	0.0744 (16)	0.0589 (15)	-0.0131 (15)	0.0081 (15)	-0.0015 (13)
C8	0.159 (19)	0.120 (15)	0.102 (10)	0.015 (11)	0.056 (10)	0.031 (9)
C8'	0.057 (9)	0.096 (10)	0.084 (15)	-0.022 (6)	0.015 (6)	0.018 (7)
S2'	0.0717 (17)	0.110 (3)	0.097 (3)	-0.0346 (17)	-0.0010 (15)	0.010 (2)
C7	0.0398 (15)	0.0610 (19)	0.071 (2)	-0.0056 (14)	-0.0015 (15)	0.0057 (17)
C9	0.104 (3)	0.072 (2)	0.109 (3)	-0.029 (2)	-0.033 (2)	0.008 (2)
C10	0.116 (3)	0.081 (2)	0.061 (2)	0.006 (2)	-0.002 (2)	-0.002 (2)
C11	0.0566 (17)	0.0687 (19)	0.0731 (19)	-0.0165 (14)	0.0055 (14)	0.0078 (17)
C12	0.079 (2)	0.0605 (18)	0.098 (2)	-0.0082 (15)	-0.0005 (17)	-0.0105 (18)

Geometric parameters (Å, °)

N1—C5	1.329 (3)	C8—H8	0.9300
N1—N2	1.370 (3)	C8'—C7	1.32 (2)
N1—H1	0.8600	C8'—C10	1.48 (2)
N2—C3	1.295 (3)	С8'—Н8'	0.9300
C3—N4	1.370 (3)	S2'—C9	1.549 (10)
C3—C6	1.485 (3)	S2'—C7	1.695 (6)
N4—C5	1.368 (3)	C9—C10	1.304 (5)
N4—C11	1.462 (3)	С9—Н9	0.9300
C5—S1	1.673 (2)	C10—H10	0.9300
C6—C7	1.493 (4)	C11—C12	1.510 (4)
С6—Н6А	0.9700	C11—H11A	0.9700
С6—Н6В	0.9700	C11—H11B	0.9700
S2—C10	1.584 (7)	C12—H12A	0.9600
S2—C7	1.699 (6)	C12—H12B	0.9600
C8—C7	1.355 (17)	C12—H12C	0.9600
C8—C9	1.51 (2)		
C5—N1—N2	113.6 (2)	C8—C7—C6	126.8 (11)
C5—N1—H1	123.2	C8'—C7—S2'	106.5 (10)
N2—N1—H1	123.2	C6—C7—S2'	122.7 (4)

C3—N2—N1	103.7 (2)	C8—C7—S2	110.0 (11)
N2—C3—N4	111.4 (2)	C6—C7—S2	123.0 (3)
N2—C3—C6	123.4 (2)	S2'—C7—S2	114.3 (4)
N4—C3—C6	125.2 (3)	C10—C9—C8	107.1 (7)
C5—N4—C3	107.7 (2)	C10—C9—S2'	120.6 (4)
C5—N4—C11	123.7 (2)	С10—С9—Н9	126.5
C3—N4—C11	128.6 (2)	С8—С9—Н9	126.5
N1—C5—N4	103.6 (2)	S2'—C9—H9	112.5
N1—C5—S1	128.8 (2)	C9—C10—C8'	103.1 (8)
N4—C5—S1	127.6 (2)	C9—C10—S2	118.6 (4)
C3—C6—C7	114.1 (2)	С9—С10—Н10	120.7
С3—С6—Н6А	108.7	C8'—C10—H10	136.2
С7—С6—Н6А	108.7	S2-C10-H10	120.7
С3—С6—Н6В	108.7	N4—C11—C12	112.3 (2)
С7—С6—Н6В	108.7	N4—C11—H11A	109.1
H6A—C6—H6B	107.6	C12—C11—H11A	109.1
C10—S2—C7	93.0 (4)	N4—C11—H11B	109.1
С7—С8—С9	110.7 (14)	C12—C11—H11B	109.1
С7—С8—Н8	124.7	H11A—C11—H11B	107.9
С9—С8—Н8	124.7	C11—C12—H12A	109.5
C7—C8'—C10	116.3 (13)	C11—C12—H12B	109.5
С7—С8'—Н8'	121.9	H12A—C12—H12B	109.5
С10—С8'—Н8'	121.9	C11—C12—H12C	109.5
C9—S2'—C7	93.4 (4)	H12A—C12—H12C	109.5
C8'—C7—C8	102.3 (15)	H12B—C12—H12C	109.5
C8'—C7—C6	130.7 (10)		
C5—N1—N2—C3	0.8 (3)	C3—C6—C7—S2'	-122.1 (4)
N1—N2—C3—N4	-0.4 (3)	C3—C6—C7—S2	54.9 (4)
N1—N2—C3—C6	-178.8 (2)	C9—S2'—C7—C8'	3.9 (11)
N2-C3-N4-C5	-0.1 (3)	C9—S2'—C7—C8	-58 (9)
C6—C3—N4—C5	170.0 (0)		4 - A (A)
	1/8.2 (2)	C9—S2'—C7—C6	-178.6 (3)
N2-C3-N4-C11	-179.4 (2)	C9—S2'—C7—C6 C9—S2'—C7—S2	-178.6 (3) 4.1 (5)
N2—C3—N4—C11 C6—C3—N4—C11	-179.4 (2) -1.0 (4)	C9—S2'—C7—C6 C9—S2'—C7—S2 C10—S2—C7—C8'	-178.6 (3) 4.1 (5) -2(9)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4	-178.2 (2) -179.4 (2) -1.0 (4) -0.9 (3)	C9—S2'—C7—C6 C9—S2'—C7—S2 C10—S2—C7—C8' C10—S2—C7—C8	-178.6 (3) 4.1 (5) -2(9) 5.2 (10)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1	-178.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2)	C9—S2'—C7—C6 C9—S2'—C7—S2 C10—S2—C7—C8' C10—S2—C7—C8 C10—S2—C7—C6	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3)	C9—S2'—C7—C6 C9—S2'—C7—S2 C10—S2—C7—C8' C10—S2—C7—C8 C10—S2—C7—C6 C10—S2—C7—S2'	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1 C11—N4—C5—N1	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3) 179.9 (2)	C9—S2'—C7—C6 C9—S2'—C7—S2 C10—S2—C7—C8' C10—S2—C7—C8 C10—S2—C7—C6 C10—S2—C7—S2' C7—C8—C9—C10	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4) 8.5 (15)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1 C11—N4—C5—N1 C3—N4—C5—S1	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3) 179.9 (2) -178.8 (2)	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C8$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4) 8.5 (15) -145 (4)
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1 C11—N4—C5—S1 C3—N4—C5—S1 C11—N4—C5—S1	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3) 179.9 (2) -178.8 (2) 0.5 (3)	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C8$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \end{array}$
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1 C11—N4—C5—S1 C11—N4—C5—S1 C11—N4—C5—S1 N2—C3—C6—C7	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3) 179.9 (2) -178.8 (2) 0.5 (3) -117.9 (3)	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \end{array}$
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—N1 C3—N4—C5—N1 C11—N4—C5—N1 C11—N4—C5—S1 C11—N4—C5—S1 N2—C3—C6—C7 N4—C3—C6—C7	1/8.2 (2) -179.4 (2) -1.0 (4) -0.9 (3) 178.5 (2) 0.6 (3) 179.9 (2) -178.8 (2) 0.5 (3) -117.9 (3) 63.9 (4)	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \\ -5.0 (13) \end{array}$
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—S1 C3—N4—C5—N1 C11—N4—C5—S1 C11—N4—C5—S1 N2—C3—C6—C7 N4—C3—C6—C7 C10—C8'—C7—C8	$ \begin{array}{c} -178.2 (2) \\ -179.4 (2) \\ -1.0 (4) \\ -0.9 (3) \\ 178.5 (2) \\ 0.6 (3) \\ 179.9 (2) \\ -178.8 (2) \\ 0.5 (3) \\ -117.9 (3) \\ 63.9 (4) \\ 5(2) \end{array} $	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \\ -5.0 (13) \\ 2.8 (11) \end{array}$
N2-C3-N4-C11 C6-C3-N4-C11 N2-N1-C5-N4 N2-N1-C5-S1 C3-N4-C5-N1 C11-N4-C5-S1 C11-N4-C5-S1 N2-C3-C6-C7 N4-C3-C6-C7 C10-C8'-C7-C8 C10-C8'-C7-C6	$ \begin{array}{c} -178.2 (2) \\ -179.4 (2) \\ -1.0 (4) \\ -0.9 (3) \\ 178.5 (2) \\ 0.6 (3) \\ 179.9 (2) \\ -178.8 (2) \\ 0.5 (3) \\ -117.9 (3) \\ 63.9 (4) \\ 5(2) \\ 179.6 (7) \end{array} $	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \\ -5.0 (13) \\ 2.8 (11) \\ -4.9 (9) \end{array}$
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—N1 C3—N4—C5—N1 C11—N4—C5—N1 C11—N4—C5—S1 N2—C3—C6—C7 N4—C3—C6—C7 C10—C8'—C7—C8 C10—C8'—C7—C6 C10—C8'—C7—S2'	$ \begin{array}{c} -178.2 (2) \\ -179.4 (2) \\ -1.0 (4) \\ -0.9 (3) \\ 178.5 (2) \\ 0.6 (3) \\ 179.9 (2) \\ -178.8 (2) \\ 0.5 (3) \\ -117.9 (3) \\ 63.9 (4) \\ 5(2) \\ 179.6 (7) \\ -3.2 (19) \end{array} $	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$ $S2'-C9-C10-S2$ $S2'-C9-C10-S2$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \\ -5.0 (13) \\ 2.8 (11) \\ -4.9 (9) \\ 2.9 (6) \end{array}$
N2—C3—N4—C11 C6—C3—N4—C11 N2—N1—C5—N4 N2—N1—C5—N1 C3—N4—C5—N1 C11—N4—C5—N1 C11—N4—C5—S1 N2—C3—C6—C7 N4—C3—C6—C7 C10—C8'—C7—C8 C10—C8'—C7—C6 C10—C8'—C7—S2' C10—C8'—C7—S2	$\begin{array}{c} -178.2 (2) \\ -179.4 (2) \\ -1.0 (4) \\ -0.9 (3) \\ 178.5 (2) \\ 0.6 (3) \\ 179.9 (2) \\ -178.8 (2) \\ 0.5 (3) \\ -117.9 (3) \\ 63.9 (4) \\ 5(2) \\ 179.6 (7) \\ -3.2 (19) \\ 178 (11) \end{array}$	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$ $S2'-C9-C10-S2$ $S2'-C9-C10-S2$ $C7-C8-C9-C10-S2$ $C8-C9-C10-S2$	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4) 8.5 (15) -145 (4) -4.2 (5) 25 (3) -5.0 (13) 2.8 (11) -4.9 (9) 2.9 (6) 0.6 (19)
N2-C3-N4-C11 $C6-C3-N4-C11$ $N2-N1-C5-N4$ $N2-N1-C5-S1$ $C3-N4-C5-N1$ $C11-N4-C5-S1$ $C11-N4-C5-S1$ $N2-C3-C6-C7$ $N4-C3-C6-C7$ $C10-C8'-C7-C8$ $C10-C8'-C7-C6$ $C10-C8'-C7-S2'$ $C10-C8'-C7-S2$ $C9-C8-C7-C8'$	$\begin{array}{c} -178.2 \ (2) \\ -179.4 \ (2) \\ -1.0 \ (4) \\ -0.9 \ (3) \\ 178.5 \ (2) \\ 0.6 \ (3) \\ 179.9 \ (2) \\ -178.8 \ (2) \\ 0.5 \ (3) \\ -117.9 \ (3) \\ 63.9 \ (4) \\ 5(2) \\ 179.6 \ (7) \\ -3.2 \ (19) \\ 178 \ (11) \\ -7.5 \ (18) \end{array}$	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$ $S2'-C9-C10-S2$ $S2'-C9-C10-S2$ $C7-C8'-C10-S2$	$\begin{array}{c} -178.6 (3) \\ 4.1 (5) \\ -2(9) \\ 5.2 (10) \\ 179.8 (2) \\ -2.9 (4) \\ 8.5 (15) \\ -145 (4) \\ -4.2 (5) \\ 25 (3) \\ -5.0 (13) \\ 2.8 (11) \\ -4.9 (9) \\ 2.9 (6) \\ 0.6 (19) \\ -179 (6) \end{array}$
$\begin{array}{l} N2-C3-N4-C11\\ C6-C3-N4-C11\\ N2-N1-C5-N4\\ N2-N1-C5-S1\\ C3-N4-C5-N1\\ C11-N4-C5-N1\\ C3-N4-C5-S1\\ C11-N4-C5-S1\\ N2-C3-C6-C7\\ N4-C3-C6-C7\\ C10-C8'-C7-C8\\ C10-C8'-C7-C8\\ C10-C8'-C7-S2\\ C10-C8'-C7-S2\\ C9-C8-C7-C8\\ C9-C8-C7-C6\\ \end{array}$	$\begin{array}{c} -178.2 \ (2) \\ -179.4 \ (2) \\ -1.0 \ (4) \\ -0.9 \ (3) \\ 178.5 \ (2) \\ 0.6 \ (3) \\ 179.9 \ (2) \\ -178.8 \ (2) \\ 0.5 \ (3) \\ -117.9 \ (3) \\ 63.9 \ (4) \\ 5(2) \\ 179.6 \ (7) \\ -3.2 \ (19) \\ 178 \ (11) \\ -7.5 \ (18) \\ 177.2 \ (6) \end{array}$	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$ $S2'-C9-C10-S2$ $S2'-C9-C10-S2$ $C7-C8'-C10-C9$ $C7-C8'-C10-S2$	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4) 8.5 (15) -145 (4) -4.2 (5) 25 (3) -5.0 (13) 2.8 (11) -4.9 (9) 2.9 (6) 0.6 (19) -179 (6) 0.2 (4)
N2-C3-N4-C11 $C6-C3-N4-C11$ $N2-N1-C5-N4$ $N2-N1-C5-S1$ $C3-N4-C5-N1$ $C11-N4-C5-S1$ $C11-N4-C5-S1$ $N2-C3-C6-C7$ $N4-C3-C6-C7$ $C10-C8'-C7-C8$ $C10-C8'-C7-C8$ $C10-C8'-C7-S2'$ $C10-C8'-C7-S2$ $C9-C8-C7-C6$ $C9-C8-C7-C6$	$\begin{array}{c} -178.2 \ (2) \\ -179.4 \ (2) \\ -1.0 \ (4) \\ -0.9 \ (3) \\ 178.5 \ (2) \\ 0.6 \ (3) \\ 179.9 \ (2) \\ -178.8 \ (2) \\ 0.5 \ (3) \\ -117.9 \ (3) \\ 63.9 \ (4) \\ 5(2) \\ 179.6 \ (7) \\ -3.2 \ (19) \\ 178 \ (11) \\ -7.5 \ (18) \\ 177.2 \ (6) \\ 113 \ (9) \end{array}$	C9-S2'-C7-C6 $C9-S2'-C7-S2$ $C10-S2-C7-C8'$ $C10-S2-C7-C6$ $C10-S2-C7-S2'$ $C7-C8-C9-C10$ $C7-C8-C9-S2'$ $C7-S2'-C9-C10$ $C7-S2'-C9-C8$ $C8-C9-C10-C8'$ $S2'-C9-C10-C8'$ $S2'-C9-C10-S2$ $S2'-C9-C10-S2$ $C7-C8'-C10-S2$ $C7-C8'-C10-S2$ $C7-C8'-C10-S2$ $C7-S2-C10-S2$ $C7-S2-C10-S2$ $C7-S2-C10-S2$	-178.6 (3) 4.1 (5) -2(9) 5.2 (10) 179.8 (2) -2.9 (4) 8.5 (15) -145 (4) -4.2 (5) 25 (3) -5.0 (13) 2.8 (11) -4.9 (9) 2.9 (6) 0.6 (19) -179 (6) 0.2 (4) 1(4)

supplementary materials

C3—C6—C7—C8' C3—C6—C7—C8	54.7 (14) -131.4 (11)	C3—N4—C11—C12		-97.5 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···S1 ⁱ	0.86	2.44	3.287 (3)	169
C6—H6a···S1 ⁱⁱ	0.97	2.99	3.949 (4)	172
C9—H9····S1 ⁱⁱⁱ	0.93	2.97	3.659 (4)	132
C8'—H8'····S2 ^{iv}	0.93	3.02	3.928 (7)	166
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $x+1$, y , z ; (iii) $x+1$, $-y+3/2$, $z+1/2$; (iv) $-x+1$, $-y+1$, $-z+2$.				

Fig. 2

